skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Ying-Pin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 17, 2026
  2. Solid state UV-vis reflectance spectra reveal the distinct electronic structure of POM@MOF materials obtained by synthetic encapsulation of mono- and di-vanadium substituted Keggin polyoxotungstates in HKUST-1. 
    more » « less
  3. Abstract Herein, we report the synthesis of a new series of rigid, allmeta‐phenylene, conjugated deep‐cavity molecules, displaying high binding affinity towards buckyballs. A facile synthetic approach with an overall combined yield of approximately 53% in the last two steps has been developed using a templating strategy that combines the general structure of resorcin[4]arene and [12]cyclo‐meta‐phenylene. These two moieties are covalently linked via four acetal bonds, resulting in a glove‐like architecture.1H NMR titration experiments reveal fullerene binding affinities (Ka) exceeding ≥106 M−1. The size complementarity between fullerenes and these scaffolds maximizes CH⋯π and π⋯π interactions, and their host:guest adduct resembles a ball in a glove, hence their name as nanogloves. Fullerene recognition is tested by suspending carbon soot in a solution of nanoglove in 1,1,2,2‐tetrachloroethane, where more than a dozen fullerenes are observed, ranging from C60to C96
    more » « less
  4. We report a synthetic strategy to integrate discrete coordination cages into extended porous materials by decorating opposite charges on the singular cage, which offers multidirectional electrostatic forces among cages and leads to a porous supramolecular ionic solid. The resulting material is non-centrosymmetric and affords a piezoelectric coefficient of 8.19 pC N −1 , higher than that of the wurtzite ZnO. 
    more » « less
  5. Abstract Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature. 
    more » « less